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S E D I M E N T - D I S C H A R G E  V E C T O R  I N  A T U R B U L E N T  F L O W  

A B O V E  A N  E R O D E D  B O T T O M  

A.  G.  P e t r o v  and P. G.  Pe trov  UDC 532.545 

The problem of determination of sediment discharge by a turbulent flow of a fluid above an 
eroded surface of an arbitrary relief with a finite slope of the bottom is considered. The surface 
of the bottom separates a stationary granular medium (sand) from a moving two-phase mixture 
of a fluid and solid particles. The medium is set into motion under the action of shear stress 
of the fluid. The medium obeys Coulomb's friction law for a granular medium and Prandtl's 
law of turbulent friction of the fluid. As a result of solving the boundary-value problem for the 
motion of a two-phase mixture of a fluid and solid particles, a generic formula for sediment 
discharges is derived. The sediment-discharge vector is expressed through the vector of shear 
stress on the bottom, the vector of the slope of the bottom, and the distribution function of the 
solid particles in the bottom laycr for an arbitrary relief of the bottom with a finite slope. It 
is shown that the sediment discharge depends weakly on the detailed distribution of particles 
in the bottom layer. Conditions of failure of the bottom surface are obtained. The sediment- 
discharge formula allows one to derive a closed system of equations that determines the process 
of bottom erosion in the river or channel bed. 

The  theory of motion of suspended particles in a turbulent  flow with a low concentrat ion was developed 
by Kolmogorov [1] and Barenblatt  [2]. Bagnold [3] suggested that  Coulomb's d ry  friction between the solid 
particles moving in a fluid should be taken into account. In [4-8], tile motion of a mixture  of a fluid and solid 
particles is studied using a rheological relation in the form of a combination of d ry  friction for the solid phase 
and viscous friction for tile fluid phase. A one-dimensional turbulent flow over a smooth bot tom is studied 
in [4-6]. An analytical relation for the sediment-discharge vector for the bo t tom relief with a small slope was 
found for a three-dimensional turbulent flow [7, 8]. 

1. G e o m e t r i c a l  D e s c r i p t i o n  of  th e  B o t t o m  S u r f a c e .  V~'e give exact  formulas for local charac- 
teristics of the bot tom surface not assuming the slope of the surface to be small. Let  X, Y, Z be a s tat ionary 
Cartesian coordinate system with the Z axis directed vertically upward. The b o t t o m  surface in this coordi- 
nate system is determined by the equation Z - ( (X,  Y), where ~ is a rather smooth  function of the variables 
X and Y. The normal vector n to the bot tom surface has the components 

o~ 0r 
nx- -  OX cos?, n y =  OY cos?,  n z = c o s ? ,  

where ? is the angle between the normal n and the Z axis. Trigononmtric functions of the angle ? have the 
form c o s ?  -- l / v / 1  + t a n 2 ?  and tan 7 = V/(Oi/OX)2+ (O;/OY) 2. 

The  projection of the unit vector k directed vertically upwards onto the tangent  plane to the surface 
Z -- ~ will be called the slope vector I (Fig. 1), which can be d~omposed  into the vectors k and n:  
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I = k - n cos 3'. Hence, we can easily write its components  along the X, Y, and Z axes and determine its 

length I = sin 3". 
Along wi th  the stat ionary coordinate system, we introduce a local curved orthogonal coordinate  system 

x, y, z. The z axis is orthogonal to the surface Z = 4, and the x and y axes are the internal coordinates of 

this surface. In  the local coordinate system, the bo t tom surface is described by the equation z ----- 0. The  slope 
vector I in the  local coordinate system has the components  I~ = 0~/0x  and Iy = O( /Oy  or, in the vector 

form, I = ~7~, ]V([ = sin3', and ~7 = (O/Ox, O/Oy). 

2. A s s u m p t i o n s .  We consider a turbulent  flow of a heavy incompressible fluid with solid particles 

in the region ~(X, Y) ~< Z ~< 'o(X, Y), where Z = 7/is the free-surface equation. The region Z ~< ~(X, Y) 
contains a s t a t ionary  homogeneous granular  medium through which the fluid is filtered. Mass t ransfer  of the 

solid particles wi th  density pp greater than  the fluid density Pw occurs at the interface Z = ~. 
The  ma in  mass of the particles is assumed to move in the bot tom layer of thickness a much less than 

the depth h = 'q - ( .  The variation of the layer thickness a in all directions is much smaller than  the variation 

of the bo t t om depth:  

a << h, I r a [  << IV([. (2.1) 

I t  is shown below that  the sediment-layer thickness is est imated as ///mean (/mean is tile mean  slope of the 
bottom).  For plain rivers and channels, the mean slope of the bo t tom is less than 10-3; therefore, condition 

(2.1) is a lmost  always satisfied. 

Tile hydros ta t ic  law of pressure distr ibution has the form cOp/OZ -- - p g ,  where p = Pw + C(pp - Pw) 

is the density of  the mixture of solid particles and the fluid and C is the concentration of particles. Let the 
pressure Pa (atmospheric)  be set at the fluid surface. After integration, we obtain the pressure distribution 

h 

= Pa + Pwg(~ - Z )  + g(pp - P w ) / C  dz'. P 
* 2  

Z 

With account of  (2.1), we obtain the following equation for the pressure on the bo t tom surface with accuracy 

to the small quant i ty  a ~ h: 

P~ = Pa + Pwg('l - 4). (2.2) 

The region of medium motion can be divided into three domains. In the first domain z <~ 0 (below the 

bot tom surface),  the fluid is filtered through a s ta t ionary granular medium. If there are no waves on the free 
surface ( ~ / =  0) and the conditions are close to hydrostatic equilibrium, the filtration ra te  is much  smaller 

than the fluid velocity in the domain z > 0 (above the b o t t o m  surface). The estimates show tha t  the effect 
of filtration is significant in the case of a ra ther  high gradient of the free surface and large dimensions of solid 

particles. Below, we consider the opposite s i tuat ion where the filtration rate is close to zero. 
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In tim second domain z > a, the solid phase is in a suspended state and is transported by a turbulent  
fluid flow as a passive admixture.  In accordance with the gravitational theory developed in [1, 2], the 
concentration of particles decreases following the power law C = Co(a/z) K, K = ~ V / ( ~ U , ) ,  where U. is tile 
dynamic velocity, W is the particle-sedimentation velocity in a quiescent fluid (settling velocity), and ~e m 0.4 

is the von K ~ m ~ n  constant .  The Schields parameter  is K ~ 12 for a flow velocity close to the s tar t ing velocity 
of the particles (U.st ~ 0.2W). F o r / 4  E (3, 12) (the case of the greatest practical interest), the contr ibut ion 
of suspended particles to the sediment discharge is negligibly small as compared to the main contr ibut ion of 
the bot tom sediment in the domain 0 ~< z ~ a. Thus, to calculate the discharge, it is sufficient to s tudy  the 
mixture flow in the third domain 0 <~ z ~< a where the friction of particles, the turbulent t ransport ,  and the 
force of gravity should be taken into account. 

3. M a t h e m a t i c a l  M o d e l .  We consider a mathematical  model of motion of a mixture of a fluid and 
particles in a thin b o t t o m  layer 0 ~< z ~< a. Acceleration of the particles of the medium moving steadily in a 
thin layer is negligibly small as compared to friction forces: p]dv/dt] << 107"/Ozl. 

Equations of Motion. The hydrodynamic law acts across the thin layer, and the equation of balance 
of the friction forces, pressure gradient, and gravity is fulfilled along the layer: 

0~" 
0--~ = ~7pr + pgV(,  p = ppC + p~(1 - C). (3.1) 

Equation (3.1) is similar to the Reynolds equation for a thin layer of a viscous fluid. 
Rheological Law. The relationship between the shear stress "r and the strain rate Ov/Oz can be 

determined by the tensor  function ~-(Ov/Oz) tha t  generalizes Prandtl 's  law for a turbulent fluid layer and 
Coulomb's dry friction law for solid particles. The  dependence satisfying these requirements has the form 

o,, o,,i-, (3.2) 
r = (rw + rp)  e ,  e = o z  Oz ; 

T~ = (~z) 2 ~zz 2p~; (3.3) 

7p = pv tan  ~, pp = (pp - pw)g Cos i ] C dz'. (3.4) 

z 

Here Vw and 7p are the absolute values of the shear stress of the fluid and solid phases, e is the unit  vector 
aligned with the vector  Ov/Oz, pp is the pressure of solid particles suspended in water, and 9~ is the angle of 
internal friction (~ ~ 30 ~ for sand). Prandt l ' s  law is described by formula (3.3) and Coulomb's dry  friction 

law for the solid phase by formula (3.4). 
The system of equations (3.1)-(3.4) supplemented by the diffusion equation was introduced in [7, 8]. 

For a particular case of a one-dimensional flow above a smooth bottom, these equations can be found in [4-6]. 
Not supplenmnting yet the equation determining the distribution of ttm concentration, we consider the 

lat ter  by a known function C(z). Then the general formulas for sediment discharges contain the distr ibution 
function of the particles in the layer 0 ~ z ~< a, which is expressed via C(z): 

a a 

z 0 

Boundary Conditions. The boundary conditions can be derived from the continuity of velocity and 
shear stress on the basis of the following reasoning [7, 8]. For z ~< 0, the medium is at rest: v - 0. The  shear 
stress in a quiescent medium does not exceed Coulomb's friction: r ~ pp tan p. In a moving medium, for 

z > 0, according to the rheological law (3.2), (3.3) accepted, we have r = pptan p + rw, and ~'w /> 0. The 
continuity of v at the  point z = 0 is possible only under the condition rw = 0. Thus, we obtain the conditions 

z = 0 :  v = 0 ,  7"~=0,  f = l .  (3.6) 
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I t  should be noted that  the velocity distributions in the problem considered and in the problem without 

particles are significantly different despite an identical law of turbulent friction (3.3). For a pure fluid near 

the wall, we have rw ~ const, which leads to a logari thmic law of velocity distribution. According to (3.6), 

7,, for the mixture increases proport ional ly  to the dis tance from the wall. and the velocity distribution law is 

linear near z = 0. 

The shear stress T is set at  the upper boundary  of the wall. The solid particles pass to a suspended 
state,  and we have rp = 0. Hence, we obtain the boundary  conditions 

z = a :  r = T ,  r p = 0 ,  f = 0 .  (3.7) 

By virtue of conditions (2.1), we can ignore the layer thickness a and consider tlm value of T to be  equal to 

tha t  in a pure fluid on the b o t t o m  Z = (; therefore, T is calculated from the solution of the hydrodynamic 
problem (in the absence of solid particles). 

4. D e r i v a t i o n  o f  t h e  S e d i m e n t - D i s c h a r g e  F o r m u l a .  We pass from the ~ r i ab l e  z to a new 

variable f (3.5). If there are no waves on the free surface (V'q = 0), the pressure gradient in the bo t t om layer 
is V p (  = - p ~ . g V (  in accordance with (2.2). Then Eqs. (3.1) and (3.4) are wri t ten as 

a 

_ / /  Or - T a l r ,  .. = T a l ,  d f  = - C  dz f dz; (4.1) 
O f  Of  

0 

F -  V (  I r l  = tan-----2" (4.2) 
cos 3" tan ~ '  tan  !z' 

a 

(pp - pu , )g tan qDcos3" f C d z .  (4.3) a l  
T J 

o 

Integrat ing Eq. (4.1) with account  of condition (3.7), we can find the following relations for the to ta l  stress 

vector r an(t for the stresses in the solid and fluid phases: 

~" = T F ,  rp = T a l f ,  rw = Iv[ - 7-p = T ( F  - a~f);  (4.4) 

1 

F = s - r a ~ / ( z ) ,  F = IFI = V/(1 - r ~ a l f )  2 + (ryatf) 2. (4.5) 

Here s is the unit vector collinear to the vector T and the x axis is aligned with the vector s. 

Tim constant al can be expressed in terms of F:~ and Fy. For this purpose, we use conditions (3.6) at 

the bot tom. I t  follows from (4.4) that  rw  = 0, f = 1, and  F = al for z = 0. Subst i tut ing these values into 
(4.5), we obtain the following equat ion for al: 

2 (4.6) ( 1 - F z a t )  2 + ( F y a l )  2 = a  T =~ ( 1 / a l - - F x )  2 =  1 - F y .  

The existence of a posit ive root of Eq. (4.6) determines the range of variation of the slope vector r .  In 

Fig. 2, this region is shown in the plane Fx, Fy. The  only positive root exists inside the circle of unit radius 
IF] < 1, on some part  of the arc of this circle we have IFI = 1 and Fz > 0, and also on the rays Fy = 4-1 and 

Fx > 0. This root is equal to 

1 
al = (4.7) 

v/1-r  
Two positive roots exist in the right half-band bounded  by the arc of the circle IFy[ < 1, IF I > 1: 

a ,  = i / ( r ,  + ). 
The bifurcation of the solution (branching of the second root) occurs at the points  Fy 4-1. The  existence 

of the second root depends on its stability. If  the b o t t o m  surface satisfies the condition [tan 3'1 < tan p at 
the initial t ime and we have Ii-'yi < 1 afterwards, the second root is absent. This follows from the continuity 
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of the dependence of al on the vector F. In what follows, we confine ourselves to s tudying the first branch of 
the root (4.7). 

Equalities (4.5) and (4.7) determine the dependence F ( f )  for a given vector r(rx, ry), which has the 
following expansions for f = 0 and f = 1: 

F ~ l - r z a l f ,  f << l, F ~ a l I  § V / r l -  F 2 ( 1 -  I ) ,  1 - f < < l .  

Thus, the function F ( f )  increases monotonically within the interval f 6 (0, 1) from F(0)  = 1 to F(1)  = a~. 

The  distributions of the characteristics in the layer are exactly expressed through the functions F and F - a l l ,  
which depend on the argument f ,  and the unit vector e of the  form 

e = (s - r a l / ( z ) ) F  -~, e, = (1 - F x a l I ) F  -1, ey = - F y a l f F  -1. (4.8) 

In what follows, we also use expansions with accuracy to the third powers of Fz and Fy: 

F - l  ~ 1 -4- f r z  - f (1  - f ) r  2 - f'2r~/2, F - a l f  ~, (1 - f ) (1  - f F ~ / 2 ) ,  (4.9) 

ex ~ 1 - f 2 r 2 / 2 ,  ey ~ -fry[1 - (1 - f ) r . l .  

We now find the velocity distribution of the mixture and the sediment discharge. From (3.3) and (4.4), 
we have 

0_~_ = U, ~ Ov Ov 
mz ' 0--~ = e ~zz" (4.10) 

From (3.5) and (4.3), we obtain 
a 

/ , = - ~ o  d r .  (4.11) Tal  
q2o = C d z  = ( p p _  pw)gtan ~ c o s 7  C dz 

0 

Using (4.11), the sediment discharge G can be represented in the form 
a 

a= f (4.1..) 
0 o 

Integrating by parts, we find 

/ - v d f ( z )  = -4- f dz. (4.13) 

0 0 

The  first term in the right part  is equal to zero by virtue of the conditions v(0) = 0 and f ( a )  = O. Substituting 
relations (4.10) into (4.13), we obtain 

a / 
- J v d / ( . )  = __U*m f q~fedz.z (4.14) 

0 0 
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The exact value of integral (4.14) is represented in the form of decomposition into the vectors s and F: 
a 

- . / v  dr(z) = __U*~e [(A + BFz)  s - B r ] ,  

0 

A = f _ a l f  e. dz, - B F y  = f v ~ -  a l f  
z 

o o 

Substituting (4.15) into (4.12), we obtain the sediment-discharge formula 

G = Goal[(A + BF:~)(T/ ITI)  - Br ] ,  

where 

ey dz. 

(4.15) 

(4.16) 

1 1 / v~- S f'(I/2-d-f)~IT-fdz, Ao = / f dz, A2 = - 2z 

0 o 

1 1 

o o 

(4.18) 

5. Ana lys i s  o f  t h e  D i s c h a r g e  Fo rmula .  The  coefficients in (4.17) determining the discharge vector 
depend on the form of the flmctkm f ( z ) .  However, according to definition (3.5), the function f ( z )  satisfies 

the restrictions 

0~<1~< 1, f ( 0 ) = l ,  f ( a ) = O ,  f ~ - = - - C / ~ o < O ,  jr...,=_C,z/~o>~O. (5.1) 

We can show that the coefficients in formulas (4.18) change insignificantly under these restrictions on f .  
Indeed, we consider the functions of the form f = (1 - z / a )  ~. We can easily see that  these functions satisfy 
restrictions (5.1) for/3 >~ 1. For fl = 1, the integrals in (4.18) acquire the following values: 

A0 = 4/3, A2 = -76/105,  B0 = 16/15, B~ = -16 /105 .  (5.2) 

Within the interval/3 C (1, 3), the coefficients of (5.2) change by less than 10%, which is seen from Fig. 3. 
In [8], the distribution function is found from the solut ion of the turbulent diffusion equation, and the 
calculated coefficients are also little different from the values of (5.2). 

Thus, we assume that  the parameter /3  equals un i ty  and the function f is linear ( f  = 1 - z /a) .  From 
formulas (4.3), (4.5), (4.8), and (4.15), we can determine exactly the coefficients A and B in the discharge 
formula. We denote the deviations of the exact values of  A and B from their approximate values (4.17) and 
(5.2) as AA and AB. For a fixed value of Fy, the greates t  values of [AA I and lAB I are reached for Fx ~ 0. 
The greatest values of AA and AB versus Fy for Fz = 0 are listed in Table 1. 

Thus, the vector dependence (4.16) with coefficients (4.17) and (5.2) determines the discharge vector G 
rather  accurately for all values of the vector F within the  region shown in Fig. 2. If the x axis is aligned with 
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turns to infinity at Irl = 1 and Fx ~< 0. This condition defines the critical slope at which the failure occurs. 
We obtain expansions for the coefficients A and B with accuracy to the third powers of Fx and Fy by 

substituting expansions (4.9) into (4.15). Confining ourselves to linear and quadratic terms in this equality, 
we obtain 

A ~ A0 + A2r~, B ~ B0 + BIFx; (4.17) 

u, ppUS. P~ Go = pp~o = , U, = V ~-~. 
~a t  ~eg tail ~2 cos "7 Pp - Pw 

Relation (4.16) can be used for finite values of the  slope vector. The  factor al determined from (4.7) 
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TABLE 1 

Fy AA A B  

--0.0007 --0.0042 

--0.0013 --0.0185 

--0.0221 --0.0499 

--0.1070 --0.1252 

0.2 

0.4 

0.6 

0.8 

X 

the vector T, then the vector G has the components Gx : GoalA and Gy : -GoalBFy (Fig. 4). Depending 

the value of F, the factor al t~'tkes any positive values up to infinity for the critical values Fx = - ~/1 F 2 . o n  

6. Compar ison wi th  E x p e r i m e n t .  In calculating the erosion process, the balance equation for the 
solid particles on the bottom surface is usually used: 

0(r 1 (OGx OGy~ 
Ot + pp( f -  ~) \ Ox + Oy ) = o. (6.1) 

The discharge vector is usually calculated using an empirical formula based on one-dimensional flow measure- 
ments on a smooth bottom (Meyer-Peter and Miller's formula is most frequently used [9]). The direction of 
G coincides with the flow velocity. Using such a method of calculation, it is impossible to explain the erosion 
process in a constant-section channel with a slope (the slope vector is directed perpendicular to the channel 
axis). Indeed, if the x axis is directed along the channel centerline, the vector G has only one component Gx, 
which is independent of x. From (6.1), we obtain O~/Ot = O. Conversely, in accordance with formula (4A6), 
the vector G has (apart from Gx) the component Gy = -GoB cot ~(Or which determines the erosion 
process at the slope. The factor Go is calculated by formula (4.16), and the dynamic velocity is expressed in 
terms of the bottom slope along the channel centerline U. = x/ghI. Figure 5 shows the channel cross section: 
the bottom surface at the initial time (dashed curves), the free surface (dotted curves), the theoretical depen- 
dences found by solving Eq. (6.1) (solid curves), and the experimental values of the bottom depth measured 
after 0.7 and 1.1 h (crosses). The water discharge is Q = 0.187 m3/sec. A similar comparison for different 
values of the discharge also demonstrates good agreement between the theory and the experiment [7]. 1 

7. Effect of the  Re la t ive  Veloci ty  of Part icles.  It was assumed in the model that the solid particles 
and the fluid have identical velocities (one-velocity model). Therefore. the resultant discharge formula (4.16) 
does not determine the experimentally known value of the starting velocity of the particles (the least value 
of the dynamic velocity at which the motion of particles in the bottom layer begins). 

1The experiments were conducted by A. N. Militeev and N. L. Moizhes at the Hydraulic Laboratory of the 
Institute of Transport Construction (Moscow). 
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Following [8], the effect of the relative velocity can be taken into account in considering the balance of 
forces acting on a unit volume of solid particles. The acceleration of particles in a thin layer 0 ~ z ~ a may 
be ignored: 

Fw + Fp + F 9 = 0. (7.1) 

Here Fw is the drag force acting on the particles from the side of water, Fp  is the friction force between the 
particles, and F 9 is the force of gravity. 

For particles of diameter greater than 0.2 mm, the drag force is proportional to the squared relative 
velocity of the particles yr.  The drag coefficient can be found from the condition of equality of the forces of 
gravity and drag for an incident heavy particle 

v~lv~l (72) 
F ~  = - ( p ~  - p ~ ) g C  W 2  , 

where W is the sedimentation velocity of the heavy particle in the fluid. 
The friction force between the particles is determined from rheological relation (3.4) for the solid-phase 

stress: 
O ( r , e )  , ,., O(e f )  

Fp = az = -(pp - Pw)gu ~ tan ~cosT.  (7.3) 

The projection of the force of gTavity onto tile tangent plane to the bottom surface is represented as 

Fp --- -(pp - p~.)gCF tan ~ cos "7. 

From (7.1)-(7.4), we obtain the following relation for tile relative velocity of tile particles: 

v~IV~lw 2 = ---ale1 tan ~c~  el = a,[r +~]. 
If the relative velocity is taken into account, the discharge G changes by 

a a 

AG = pp / Cv~dz = -pp(~O / V r d f ( z ) ,  
o 0 

vr ---- - w v t a n  / pcos7  e l  

a l  ] V / ~ I  ] " 

where v~ is found from (7.5): 

Substituting this relation into (7.6), we obtain 

(7.4) 

(7.5) 

(7.6) 

1 

AG = Jpp~otV~/tan Fc~ J = f (7.7) 
al ' V/Jell 

0 

The vector J is independent of the particle-distribution function in the layer f(z).  It can be calculated 
by decomposing the integrand function with accuracy to terms of order F3: 
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TABLE 2 

F~ AJ~ AJy 

0.2 0 -0.0010 
0.4 -0.0008 -0.0085 
0.6 -0.0055 -0.0314 
0.8 -0.0302 -0.0914 

iv/_ l _ _ + - ]x/  elY _ (1 - 2f)Fy - (1 - f ) (1  - 3f)r r . (7.8) 

Substi tuting (7.8) into (7.7), we obtain expansions for the vectors J and A G  with accuracy to third-order 
terms in Fx and Fy: 

g ~ (1 - Fy2/12)s. (7.9) 

The exact value of integral (7.6) is ahnost identical to its approximate vahm (7.9), which can be seen from 
the results listed in Table 2 (Fz = 0). Here AJ~ and A J y  = Jy are the differences between the exact and 
approximate values of the components of the vector J .  As Fx increases, the error rapidly decreases. 

Using formulas (4.16), (4.17), (5.2), (7.7), and (7.9), we can find the discharge-vector components 
G + A G  for finite values of the slope vector F: 

Gz + A G z  = GoalA(1  - U, s t /U , ) ,  

U, st = aeW~/tan ~cos'7 J 
al A'  V 

Gy + A G y  = - G o a l B F y ,  

J ~  1 F~ 
12" 

(7.10) 

The quantity U, st is the start ing velocity of the particles. There is no discharge in the direction of the vector 
T if U, st ~< U,. The relation J / A  .~ (3/4)(1 + 0.bF 2) ~ 3/4 depends weakly on the slope vector. From 
here, substi tuting ~ ~ 0.4, A = 4/3, and v/tan p c o s v  ~ 0.7 into (7.10), we obtain an approximate formula 
convenient for engineering calculations: 

U, st -- 0-2W/v af~l- (7.11) 

The dependence of the start ing velocity of the particles on the bottom slope is taken into account in (7.11) 
by the factor hi. 

Physical  Meaning  o f  the Starting Velocity o f  the Particles. The formula for the starting velocity of the 
particles can be derived from the condition for the critical thickness of the layer. If the layer thickness a is 
smaller than the particle diameter d, the solid particles do not move in the layer. In this case, Coulomb's 
friction force between the particles is greater than the external force T applied from outside, and the motion 
cannot be described by the methods of mechanics of continuous media (3.1)-(3.4). We write the start ing 
condition for particles a > d taking into account equality (4.3): 

a ~. alU2,/((s  - 1)gCtan ~cosv)  > d, s -- pp/pw.  (7.12) 

Here C is the mean concentration of particles in the layer. Using the formula for the sedimentation velocity 
of the particles W 2 -- (s - 1)gd [9] (balance of the forces of drag and gravity), condition (7.12) can be 
represented in the form 

U, 2 > U2,st," U, st = W v / C  tan ~ c o s v / v / ~ .  (7.13) 

Formula (7.13) coincides with (7.10) and (7.11) for C' = (Jae /d )  2 ~ 0.09. 
8. C o m p a r i s o n  of  t h e  Fo rmu la s  for t h e  Discharge  a n d  S t a r t i n g  Ve loc i ty  of  t h e  P a r t i c l e s  

w i t h  E m p i r i c a l  D e p e n d e n c e s .  One of the best fitting empirical formulas of tim discharge is given by 

Grishanin [9]: 

G -- ( 8 p , / ( s  - 1)) v/g(U2,/g - 0.047d) 3/2. (8.1) 
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Using the formula for the sedimentation velocity W 2 = (s - 1)gd [9] and formula (7.10) for the starting 
velocity, we can transform Eq. (8.1) to 

G = 8 p p g 2 / ( ( s  - 1 ) 9 ) ( 1  - (U.st/U.)2) 3/2 

The range U.st /U.  < 0.9 is of practical interest, wherein the discharges calculated by formulas (8.1) and 
(7.10) differ by no more than 20~  for F = 0. 

We consider the formula for the start ing velocity (7.11) for the most important cases. 
Uniform Flow above a Horizontal Bottom ( r  = 0). From (4.7) and (7.11), we obtain the known 

empirical dependence [9] 

al = 1, U.st0 = 0.2W. 

Flow in a Channel with a Slope. The slope of the b o t t o m  and the vector r are perpendicular to the 
channel axis x and the shear stress on the bottom. From (4.7) and (7.11), we obtain 

F x = O ,  al = 1 / v / l -  F2, U ,  s t  = U ,  s t 0 ( 1  - F 2 ' 1 / 4  - - y /  

This formula was derived and experimentally verified by Lane and Carlson [10]. 
Flow with a Large Slope Parallel to the Channel Axis. The  slope of the bot tom and the vector F are 

parallel to the velocity and stress T .  From (4.7) and (7.11), we obtain 

F U = 0, Fx = - t a n  "),/tan ~, al = 1/(1 + Fx), U.st -~- U.st0V/1 ~- I~x . 

The results calculated using this formula are in good agreement with the experimental data [11] for U, st for 

tim angles 7 = 0, 12, 18, and 22 ~ 
C o n c l u s i o n s .  The final result for the discharge vector  has not a single empirical parameter and can 

be used for the bot tom surface with an arbitrary finite slope up to its failure. For a one-dimensional flow 
above a horizontal bottom, the main result coincides with the known empirical formulas [9]. 

The  sediment-discharge formula derived leads to the condition of the beginning of the bottom-erosion 
process (start ing of the particles), wtfich generalizes the known cases: the Schields condition [9] for a horizontal 
bottom, the starting condition for the particles in a channel with a transverse slope of the bottom [10], and 
the experiments for a large slope of the bot tom along the channel axis [11]. 

The  principal difference of tim resultant theoretical formula from the known empirical formulas is that  
the sediment-discharge vector contains a transverse component  to the flow direction, which is proportional 
to the transverse component of the bottom-slope vector, whereas the empirical dependences take into ac- 
count only the longitudinal component  of the vector. The  erosion process in channels with a bot tom slope 
across the channel axis cannot be described by the known empirical functions, which ignore the transverse 
component of the sediment-discharge vector; using the sediment-discharge formula with account of the trans- 
verse component ,  complete agreement of the theory and experiments on bot tom erosion in such channels is 

obtained. 
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